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A key issue when designing a selection system is how to determine which selection tool(s) 

contribute(s) the most to the prediction of the outcome or criterion of interest (e.g. performance on the 

job). Johnson (2000) provides a good definition of relative importance: “the contribution each variable 

makes to the prediction of a dependent variable considering both its unique contribution and its 

contribution, when combined with other variables” (p. 1). An additional clarification is provided by 

LeBreton (LeBreton, 2007, Slide 6), when he states “Relative importance refers to the proportionate 

contribution each predictor makes to R
2 
considering both its individual effect and its effect when 

combined with the other variables in a regression equation.”  

Determining relative importance is essential in most circumstances for maximizing selection 

system utility. Relative importance is not necessary when a single predictor is used because there are not 

two variables to relate to one another; however, many organizations generally choose to use a multiple 

predictor system for two of reasons. First, employers might balk at hiring an applicant based on a single 

predictor (e.g. only using a résumé and no interview). Secondly, multiple predictors can increase the 

criterion-related validity of the overall selection system. For example, Schmidt and Hunter (1998)  noted, 

combining a structured interview (r = .51) and a cognitive ability test (r = .51) yields a combined validity 

of .63. Thus, accurate determination of the best combination of predictors is of utmost importance. 

Additionally, each selection device may have different challenges associated with it (e.g. adverse impact, 

significant cost, negative applicant reactions, etc.). So, knowledge of which devices have the most 

predictive ability relative to other predictors is critical when assessing whether or not to add a device to a 

selection system.  

The first debates about the determination of relative importance began to appear in the 1960s 

(Darlington, 1968). More recently, VanIddekinge and Ployhart (2008) provided a comprehensive review 

of strategies for assessing relative importance. They suggest there are 4 major strategies to determine 

relative predictor importance: (1) regression coefficients, (2) incremental validity, (3) dominance analysis, 

and (4) relative weight analysis. This paper explains these strategies for the determination of relative 

predictor importance, and offers practical suggestions for determining which strategy is appropriate.  
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Strategies to Determine Relative Predictor Importance  

As noted above, there are four main strategies to determine relative predictor importance.  Until 

approximately a decade ago, only two options were available: examination of regression coefficients and 

analysis of correlation coefficients.  More recently two additional options have been created: dominance 

analysis and relative weight analysis. A discussion of both the historically used methods and the more 

recently created methods follows. 

Historically Utilized Strategies for Assessing Relative Importance. Hoffman (1960) presented 

evidence that the products of each predictor variable’s standardized regression coefficient (βx) and its 

zero-order correlation (ryx) with the criterion variable summed to R
2
. Hoffman further stated that this 

represented the variable’s “independent contribution of each predictor” (p.120; emphasis added). 

Following his seminal work, researchers and practitioners began utilizing regression coefficients and 

zero-order correlations to evaluate selection systems. 

Regression Coefficients. The first strategy—and historically the most commonly used—is the 

magnitude and statistical significance of regression coefficients. A regression coefficient is a constant in a 

regression equation that represents the rate of change in one variable (criterion) as a function of another 

variable (predictor). Thus, any predictor variable that expresses a significant regression coefficient can be 

considered to be an important predictor and its relative importance can be determined by the magnitude 

and sign of the coefficient value. These coefficients can be interpreted as either unstandardized or 

standardized values. Unstandardized regression coefficients indicate the predicted change in the criterion 

variable given a one unit change in the predictor variable, but unstandardized coefficients of multiple 

predictors cannot be compared directly because of their different units of measurement.  Standardization 

of the regression coefficient—changing the unit of measure to a mean of 0 and variance of 1—allows for 

easier comparison of predictor variables that were measured on different scales.   

Thus, when evaluating a selection system for predictor utility, it is more desirable to use 

standardized regression coefficients so it is possible to know which predictors provide stronger relative 

importance. Organizations may weigh these predictors with more relative importance in order to improve 
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a selection system’s ability to identify applicants with high performance potential. Conversely, attempting 

to compare unstandardized regression coefficients would be difficult and confusing because the variables 

would be compared on a different metric. Thus, any weighting with unstandardized coefficients would 

also be misleading, because scores would exhibit different values (e.g. 1-100 score range on one predictor 

versus 1-5 score range on another predictor). In sum, if a regression coefficients strategy is used to 

determine relative importance of multiple predictors, standardized regression weights should be used. 

While the logical and methodological simplicity of this strategy may be considered useful, the 

strategy does possess an inherent weakness. In his seminal work, Hoffman (1960) claimed that his 

conception of relative importance measured “independent contribution of each predictor” (p. 120; 

emphasis added).  However, other researchers called into question Hoffman’s assertion of “independent” 

contribution of each predictor because it inferred that every other predictor’s influence is held constant in 

the model (Ward, 1962).  Hoffman (1962) was forced to reply that his conception of relative weights did 

not measure independent contribution in that sense. 

Essentially, if predictors are uncorrelated or orthogonal, standardized regression coefficients 

equal zero-order correlations, and if the squared regression coefficients are summed, they equal R
2
. 

However, when predictors are correlated (as they almost always are in selection systems), a change in one 

predictor variable will almost assuredly result in a change in all other correlated predictors, and summing 

squared regression coefficients will no longer equal R
2
, making decomposition of the effects difficult or 

near impossible (LeBreton, 2007). That is, estimates of importance from regression coefficients use total 

effects, but ignore partial and direct effects, masking the effects of correlated predictors (LeBreton, 

Ployhart, & Ladd, 2004). Consequently, indices of predictor importance that do not consider the existing 

relationship between all of these different variables can be misleading (Johnson & LeBreton, 2004). 

Some suggestions have been made to address this problem. For example, standardization of 

coefficients using a partial standard deviation that controls for correlations in other predictors has been 

suggested, but this approach still does not consider the partial effects (Bring, 1994). Thus, it is common to 

report these as indices of relative predictor importance, but it may be unwise to rely solely on them 
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because they yield highly divergent results compared to more recently developed strategies have 

demonstrated more accuracy in Monte Carlo simulations (Johnson & LeBreton, 2004; LeBreton, et al., 

2004). Specifically, because regression coefficients control for, rather than expose partial effects, they can 

create confusion around which one in a set of correlated predictors is best,  making relative ranking 

ineffective.     

 Correlation Coefficients The second major strategy, which is frequently used in conjunction with 

the first strategy, is the examination of incremental validity in the form of correlations (Azen & Budescu, 

2003). This strategy, like the first strategy, is also simple and straightforward in its logic because if one 

variable is statistically related to another (i.e. criterion variable), then logically it would be important. 

Essentially, this index gives an indication of how much more of the variance in a criterion variable can be 

attributed to the inclusion of the selected predictor variable (e.g. increase in R
2
). However, there are also 

inherent weaknesses involved in this strategy. A major weakness is that similar to regression coefficients, 

correlation coefficients do not consider partial and total effects of relationships between predictors and 

criterion variables (LeBreton, et al., 2004). Essentially, correlation coefficients cannot partition the 

variance shared between multiple predictors that should be attributed to each predictor. Consequently, 

squared correlations will only sum to the model’s R
2
 if the predictors are all uncorrelated (LeBreton, 

2007). Additionally, model order entry can affect predictor importance, which can mask a predictor’s 

relative importance. For example, if X2 is entered after X1 and they are both highly correlated, X1 will 

look more important, but if the order is reversed then X2 will look more important.   

Weaknesses Associated with Both Strategies. Even though the first two approaches are the most 

commonly used in research and in practice through selection system design, both share weaknesses that 

warrant consideration (Azen & Budescu, 2003). Overall, these two indices of predictor importance are 

difficult to interpret due to model order entry and information that cannot be accounted for in the 

procedures. Regression coefficients (both unstandardized and standardized) include the effects of all of 

the other variables in the equation. That is, ordinary least squares (OLS) is used to describe the line of 

best fit and how much change will occur in a predictor with change in the criterion while holding all other 
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variables constant. Likewise, strategies examining correlations ignore the effects of all other predictors. 

That is, they describe the relationship between the predictor and criterion in isolation of all other 

variables. LeBreton and colleagues (2004) performed a Monte Carlo study and found that as the mean 

validity of the predictors, amount of predictor collinearity, or the number of predictors increased (beyond 

3), the interpretability of the beta and correlation coefficients suffered seriously due to coefficient 

instability. Thus, they warned against using either of these first two strategies in isolation, and instead 

advocated the use of Dominance Analysis (DA, Azen & Budescu, 2003; D. V. Budescu, 1993) or a form 

of Relative Weight Analysis (RWA), the epsilon (ε) statistic (Johnson, 2000).  

 Recently Developed Strategies for Assessing Relative Importance.  While many researchers 

and practitioners continue to use R
2
, β, and correlations as indices of predictor importance, research over 

approximately the last decade provides strategies to more accurately assess relative importance (e.g. D. V. 

Budescu, 1993). These strategies include DA and RWA. 

 Dominance Analysis. Dominance Analysis (DA) attempts to account for every possible pairwise 

combination of predictor variables in the prediction of a criterion variable in an effort to identify a pattern 

of prediction dominance exhibited by the most important variables (Azen & Budescu, 2003; D. V. 

Budescu, 1993). Unlike the first two strategies that start with a particular statistic then try to apply 

meaning to the number, DA attempts to provide clarity to the issue of importance in a straightforward 

manner using a strategy designed especially for assessing importance. Specifically, the correlation 

coefficient strategy gives a single statistic to denote the importance of a predictor, while DA produces a 

table giving a detailed summary of how each predictor contributes differently to all subset models (D. 

Budescu & Azen, 2004). For example, if a potential full model examines three predictors (e.g. 

extraversion,  emotional stability, and agreeableness), a DA summary table will show all possible 

combinations of these variables and the average relative predictive indexes (based on squared semipartial 

correlations) for each model, as well as overall averages for each predictor (see table below). Budescu  

(1993) originally covered only complete dominance (e.g. the variable is the most important predictor in 

the entire set of predictors) and undetermined (e.g. complete dominance cannot be determined). However, 



Predictor Importance - 7 

 

Predictor Importance for Selection: Best Practices and Latest Findings © 2011, Intulogy 

 

Azen and Budescu (2003) created a hierarchy of dominance categories: (1) complete dominance, (2) 

conditional dominance (the variable is the most dominant predictor depending on the subset included in 

the model), and (3) general dominance (the overall average dominance index of a particular variable in a 

given subset of variables). Thus, the pattern of dominance can show which variables have the most 

importance in each subset of the model, as well as within the entire model (LeBreton, 2007).  

 

One of this approach’s strengths is that DA can detect and identify suppressor variables because 

the DA table will show a negative dominance index, instead of it being masked as in other strategies. An 

additional strength of this approach is the ability to perform a constrained DA. That is, one predictor 

variable can be constrained as being necessary to a model, to find which predictors are the most important 

and best complement the variable required in the model (Azen & Budescu, 2003). This can be a benefit to 

a practitioner redesigning a selection system who has been given direction that a specific tool(s) must 

remain in the system. A final strength of this approach is that importance estimates can be divided by the 

R
2
 to calculate the percentage of explainable variance in the overall R

2
 by a given predictor variable 

(LeBreton, 2007).  

A weakness of this strategy is that DA is not designed to address the hierarchical order of 

predictors. This can be done through multiple runs of a constrained DA, but is more difficult to interpret 

due to the amount of rendered data (Azen & Budescu, 2003). Additionally, as the number of analyzed 

predictors increases, DA becomes more computationally difficult because of the exponentially increasing 

number of submodels involved (Johnson & LeBreton, 2004). This is because for p predictors, there are 2
p 
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– 1 submodels. For example, with three predictors a DA summary table will have seven possible models 

(i.e. (1) X1, (2) X2, (3) X3, (4) X1 & X2, (5) X2 & X3, (6) X1 & X2, (7) X1, X2, & X3). Likewise, 10 

predictors will yield 1023 possible submodels.  

 Relative Weights Analysis. The final strategy for identifying relative importance of predictors is 

RWA (Johnson, 2000). This strategy involves variable transformation of the original predictors into 

orthogonal (uncorrelated) variables that are related to criterion variables, but not to each other, which are 

then related back to the original predictors (Van Iddekinge & Ployhart, 2008). This strategy attempts to 

deal with the problem inherent with many of the strategies:  if predictor variables are correlated, they 

influence all other derived relative importance indices. Historically, one of the major weaknesses of this 

strategy was in how the orthogonal variables were calculated. The regression weights used to create them 

are still coefficients from regressions on correlated variables. Thus, because the new supposedly 

orthogonal variables were regressed upon the original correlated predictors, this reintroduced the problem 

of correlated variables back into the equation.  

 Johnson’s (2000)  epsilon statistic (εj) addresses this weakness and has become one of the more 

suggested approaches to relative weights analysis (Johnson & LeBreton, 2004; Van Iddekinge & 

Ployhart, 2008). An epsilon statistic is calculated for each predictor variable that is its relative importance. 

Epsilon can also be easily transformed into a statistic that can be interpreted as the percentage of the 

model R
2 
associated with each predictor. The figure below provides a detailed illustration of how the 

epsilon statistic is calculated. The Xj variables represent three predictor variables, which are transformed 

into variables (represented by the Zk variables) that are as related to the criterion variable as possible, but 

uncorrelated with the original predictor variables. The Z variables are then used to predict the criterion 

variable Y, and the regression coefficients for this are represented by βk. Finally, the regression 

coefficients for Xj on Zk are represented by λjk. Since the new Z variables are uncorrelated, the regression 

coefficients λjk are equal to the correlation coefficients between Xj and Zk. So, any λjk
2
 is equal to the 

proportion of variance in Zk that is accounted for by Xj. To calculate the epsilon statistic for any predictor, 

the proportion of variance accounted for each Zk by each Xj is multiplied by the proportion of variance 
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accounted for by each Zk in Y, and then all of the products are summed. In other words, the original 

predictors are regressed on the orthogonal variables, instead of regressing the orthogonal variables on the 

original predictors.  For example, to calculate epsilon for predictor variable 1 (X1) in the figure, the 

following equation would be used: ε1=λ
2

11β
2

1+ λ
2

12β
2

2+ λ
2
13β

2
3.  

 

A major strength of Johnson’s (2000) epsilon statistic over DA is that its ease of computation 

with an unlimited number of predictors. Furthermore, this calculation eliminates the problem that earlier 

attempts at RWA had with correlated variables. RWA also presents surprising convergent validity with 

DA. This is because each is based on different mathematical processes, but arrives at almost identical 

results (Johnson & LeBreton, 2004). Additionally, RWA and DA are generally no more computationally 

complex than conducting a regression analysis, and a number of researchers have made SAS and SPSS 

syntax available, as well as Excel spreadsheets to make the analyses more accessible (c.f. LeBreton, 2007; 

LeBreton, Hargis, Griepentrog, Oswald, & Ployhart, 2007).  The primary weakness is that the relative 

weights are conducted on the full model containing all predictors, so looking for a pattern of relative 

predictor importance is difficult (LeBreton, 2007).  

As an example of RWA’s utility, LeBreton and colleagues (2007) reanalyzed data from Mount, 

Witt, and Barrick (2000), which had examined the incremental validity of biodata measures. LeBreton 

and colleagues conducted a RWA and found that the relative importance of a biodata-work habits 

measure was two times larger than the incremental importance reported by Mount, et al (2000). They also 
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found that the RWA index for the biodata-problem solving measure was three times larger than its 

incremental importance, completely dominating all of the other predictors in the study. In the original 

study, the biodata scales accounted for small to moderate increases in R
2
; using RWA, they not only 

added to the prediction, but were identified as the most important predictors of job performance.  

 Practical Recommendations. LeBreton, et al. (2007), presented a three-step set of guidelines for 

practitioners regarding relative importance of predictor variables. They suggest that first, all predictor 

variables should be examined for bivariate correlations. The rationale in this step is that if a predictor fails 

to have a significant correlation with the criterion, there is little reason to proceed further. Second, if 

predictor variables exhibit significant correlations with the criterion, a hierarchical regression analysis 

should be performed to examine the incremental variance of each predictor. F tests, examining the change 

in R
2
 associated with each predictor can be conducted, or the statistical significance of the t-tests and 

unstandardized regression coefficients can be examined, as they are statistically identical to the same tests 

to acquire change in R
2
.  As a final step, RWA or DA should be conducted to find the relative weights or 

dominance weights for each predictor. That is, RWA or DA should be conducted as supplemental indices 

of relative predictor importance (Van Iddekinge & Ployhart, 2008). It is also suggested that if one wishes 

to see the pattern of dominance exhibited by different predictors in the full model or different subsets of 

the model that a DA can be conducted, because it gives pattern information that RWA cannot provide 

(LeBreton, 2007).  

Research following LeBreton and colleagues (2007)  present other pieces of information that 

should be presented in a relative importance analysis. First, research has developed methods for using 

RWA to assess multiple predictors on multiple criterion variables (LeBreton & Tonidandel, 2008). As 

suggested by LeBreton (2007) in his CARMA presentation on the topic, this could allow organizational 

practitioners to assess the relative importance of predictors on multiple outcomes, such as the examination 

of a new biodata measure on the job performance and turnover rates simultaneously, or on multiple 

aspects of an outcome measure (e.g. task performance, OCBs, and CWBs). Secondly, until recently there 

was no way to measure the statistical significance of relative weights. Now, researchers using RWA can 
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calculate power and statistical significance instead of making inferences based on confidence intervals 

(Tonidandel, LeBreton, & Johnson, 2009). In addition to these two new pieces of information, relative 

weights (or general dominance weights) can be divided by R
2
 to create rescaled relative importance 

weights that make for easier communication to human resource executives and other stakeholders. For 

example, it should be easier to convince an organizational decision-maker that a new selection device is 

valuable when, “it is described as accounting for 25% of the predictable variance in the criterion or 

outcome than […] when it is described as increasing R
2
 by .03” (LeBreton, et al., 2007, p. 481).     

Summary 

Whether considering the use of multiple selection devices in a complete selection system, being 

able to accurately discern which predictors are the most important relative to other devices being 

considered is critical to the design. Regression coefficients and correlation correlations have been used in 

isolation for decades to determine relative predictor importance. However, newly designed procedures 

like DA and RWA have presented strong evidence of their ability to provide accurate information about 

relative importance without some of the inherent weaknesses of more traditionally accepted methods. 

Thus, in addition to reporting these traditional indices such as regression coefficients and incremental 

validity, we would be wise to follow the recommendations that several researchers have made about using 

RWA and DA as supplementary indications of which predictors are the most important to making 

selection decisions.  
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